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of C&15/c16 Subunits of Swinholide A and Scytophycin C. 
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Abstract: The aldehyde 8, a Cl-C15 subunit of swinholide A, was prepared in 10 steps (14.5% 
yield, 78% ds) by starting with the asymmetric aldol reaction, 15 + 17 + 18. Conversion into the 
corresponding ethyl ketone 9 provides a Cl-C16 subunit of scytophycin C. 

Swinholide A (1). isolated from the marine sponge Theonelia swinhoei. is an unusual 44-membered 
dilactone having potent cytotoxic activity.1 Other macrodiolides from 77reonellal~2 include misakinolide A2a-C 
(2) (G bistheonellide A2b.d). which lacks two of the swinholide double bonds and has a 40-membered 
macrocyclic ring. Scytophycin C (3) is a related 22-membered macrolide3 obtained from the blue green alga 
Scytonema pseuabb-. As shown in Scheme 1. the swinholide A macrocycle is made up of two identical 
monomeric secoacid units 4 (= pm-swinholide A4). lactonised through the 21/21’ hydroxyls as indicated, while 
that of scytophycin C corresponds to the secoacid 5. 
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Scheme 1 

As part of our efforts directed towards the total synthesis of these complex macrolides,s we have 

previously described the enantiocontrolled preparation of aldehydes @a and @‘, as C19-C32 and c17-C~ 
subunits of swinholide A (misakinolide A) and scytophycin C, respectively. We now report the asymmetric 

synthesis of the aldehyde 8 and the corresponding ethyl ketone 9, as matching C1-Q~ and Cl<16 subunits for 
swinholide A and scytophycin C. 
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Scheme 2 summa&es our strategy for the synthesis of pre-swinholide A4 (4). involving the 
stereocontrolled aldol coupling of the ethyl ketone 10 to the aldehyde 8 to form the C15Ct6 bond. We have 
already described58 an efficient asymmetric synthesis of 6, which should serve as a precursor for 10. Our 
approach% to scytophycin C relies on a different aldol coupling at Cle-C17 between the ethyl ketone 9 and the 
aldehyde 7. As outlined below, the aldehyde 8 should be available in enantiomerically correct form by starting 
with an asymmetric synthesis of the (R)-dihydropyrone 11. A preliminary study,% using racemic 11 with Pt = 
Bn. demonstrated that the two-step sequence, 12 3 13 -_) 14, worked well using silyl enol ether chemistry 
allowing efficient control of the relative stereochemistry at Cg and C7. However, in order to ensure efftcient 
&protection at Cl5 to give the alcohol precursor of 8. it was subsequently found to be necessary to use Pi= Bz 

(PhCO) rather than Bn.6 
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The enantiocontrolled synthesis of the aldehyde 8 and its derived ethyl ketone 9, starting from (0 l- 
chloro-2-buten-3-one (15),7 is shown in Scheme 3 and outlined below. Bnolisationg of 15 with (+)- 
Ipc~Cl/@@lBt (PhMe. 0 “c. 1 h) was followed by the addition of the aldehyde 17 to the derived enol borinate 
16 (-78 “C, 3.5 h).o Subsequent warming of the reaction mixture (-20 “c, 18 h) gave, after mild oxidative 
workup, a 56% yield of the aldol product 1810 in 80% ee, [c$= -15.2’ (c 2.6, CHC13). Higher yields of 18 
(up to 77%) could be obtained by using shorter reaction times, or by carrying out the aldol reaction in Etfl, but 
this led to a reduction in enantioselectivity @l-60% ee).ll As with other asymmetric boron aldol reactions of 
methyl ketones.1~ moderate levels of enantioselectivity am obtained, due to competition between twist-boat (cf. 
TS-I = preferred si-face attack) and chair transition structures. l*b Under our standard conditions using 

Me$ioTf/iP~NBt in CHzC12.g cyclisation of 18 to the crystalline (R)-dihydropyrone 19 was then achieved in 
61% yield. This key intermediate was readily obtained in enantiomerically pure form, [a]: = +66.2’ (c 2.9, 
CHCl3). simply by tecrystallisation from Et2tYhexane (m.p. 62-63 “C).t3 

Using NaBH&eC13.t4 reduction of 19 to the corresponding allylic alcohol, followed by acetylation, 
gave the acid-sensitive glycal20, [cc]~ = -36.5” (c 3.1, CHC13), in 97% overall yield. A variants of the F&tier 

rearrangement.15 subsequently allowed the stereocontrolled introduction of the C9 aldehydic side-chain with 
concomitant allylic tmnsposition. Reaction of 20 with the tert-butyldimethylsilyl enol ether of acetaldehy&,k in 
the presence of C12Ti(oiPr~ (2.2 equiv, PhMe, -42 “C, 0.5 h), gave an 83% yield of the aldehyde 21, [al: = 
-17.5O (c 2.9, CHC13), with 97% ds. This has the correct oxidation level for chain-extension by an aldol 
addition. Introduction of the C7 stemocentm in the desired sense relied on the rselective addition of the silyl 

dienol ether 22 to the si-face of the aldehyde 21. This vinylogous Mukaiyama aldol reactionse was best 
achieved by using Bl+OEt2 (2.2 equiv) as a mono-coordinating Lewis acid in CH2C12/Et20 at -78 ‘C, i.e. 

without chelate participation from the dihydropyran oxygen. Under these conditions, an 81: 19 ratio of epimeric 
alcohols was obtained in 85% yield. The major alcohol 23 (69% yield) was shown to have the correct (75) 
configuration, together with the required (E)-enal terminus. Horner-Emmons olefination of 23 cleanly 
introduced the second (E)-double bond of the diene ester moiety to give 24 in 88% yield. At this point, 
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we confiied the C7 configuration as (5’) by *H NMR analysisl~ of the Mosher e.sterl~C derivatives of 24. 
Next, the 7-OH was protected as its TBS ether 25, [a]:= -45.0” (c 2.9, CHC13). which was followed by the 

efficient cleavage of the benxoate ester by transesterification, to give a 91% yield of 26. [u]g= -81.6’ (c 1.5. 
CHCl3). Dess-Martin oxidation17 of 26 then gave the aldehyde 810 (95%). [u]g= -83.3” (c 1.7. CHC13). as 
required for swinholide A. 

Conversion of 8 into the ethyl ketone 910 required for scytophycin C could be achieved in 60% yield 
(unoptimised) by the addition of EtMgBr to give a 1: 1 mixture of Cl5 secondary alcohols, followed by Dess- 
Martin oxidation.17 

TS-1 
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(es:) r “y~““g’yyJ $3 
\ \ OSiMeD OAC 0 

21 97%ds 20 19 [upgrade to >99% 88 
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Scheme 3 (a) (+HIp&BCl, @rsNEt, Phhle, 0 T, 1 h; 17, -78 --t -20 “C, 21.5 h; H202, MeOH, pH-7 buffer, (b) 
1.05 quiv Me$iOTf, 0.8 equiv iPr2NEt, CH2Cl2, -78 + 20 “C, 2.5 h: (c) NaB&, CeCly7H20, EtOH, -7VC. 2 h; 
(4 Ac20, iPr2NEt, CH2Cl2.0 T. 18 h; (e) H$=CHCYl’BS. 2.2 equiv ClZTi(Oh)2, PbMe, 42 “C. 0.5 h; v) 22.2.2 
equiv BFyOEt2,9:1 CH2Cl2IEt20, -78 Oc. 1 h; (s) (Me0)2P(O)CH2C02Me, “BuLi, THF, 0 --t 20 OC, 3 h; (h) 
TBSOTf, 2,6-lutidhe, CH2CI2. -78 “C, 20 min; (I.) K2CO3. MeOH. 20 Oc. 5.5 h; (j) Des.+Martin periodimane, CH2Cl2, 
20 “C, 0.5-1.5 h; (k) EtMgBr. &fi, -78 + 0“C. 20 min. 

In summary, the Cl-Cl5 subunit 8 of swinholide A has been efficiently prepared in enuntiomerically 

pure form in ten steps (14.5% yield, 78% ds) from 15. This aldehyde has also been converted in two further 

steps into the Cl-C16 subunit 9 of scytophycin C. In this synthesis, the introduction of the Cl3 stereocentnz 

relies on the reagentcontrolled boron aldol reaction, 15 + 17 -_) 18, while the remaining two stereocentres are 

set up by the sequence, 20 + 21+ 23, using substrate-induced control. Further studies directed towards the 
total synthesis of swinholide A and scytophycin C am underway. 
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