Studies in Marine Macrolide Synthesis: Asymmetric Synthesis of $\mathbf{C}_{1}-\mathbf{C}_{15} / \mathbf{C}_{\mathbf{1 6}}$ Subunits of Swinholide A and Scytophycin C.

Ian Paterson* and Julian D. Smith
University Chemical Laboratory, Lensfield Road, Cambridge CB2 IEW, UK.

Abstract

The aldehyde 8, a $\mathrm{C}_{1}-\mathrm{C}_{15}$ subunit of swinholide A , was prepared in 10 steps (14.5% yield, $\mathbf{7 8 \%}$ ds) by starting with the asymmetric aldol reaction, $15+17 \rightarrow \mathbf{1 8}$. Conversion into the corresponding ethyl ketone 9 provides a $\mathrm{C}_{1}-\mathrm{C}_{16}$ subunit of scytophycin C .

Swinholide A (1), isolated from the marine sponge Theonella swinhoei, is an unusual 44-membered dilactone having potent cytotoxic activity. ${ }^{1}$ Other macrodiolides from Theonella 1,2 include misakinolide $A^{2 a-c}$ (2) ($=$ bistheonellide $A^{2 b}, d$), which lacks two of the swinholide double bonds and has a 40 -membered macrocyclic ring. Scytophycin C (3) is a related 22 -membered macrolide ${ }^{3}$ obtained from the blue green alga Scytonema pseudohofmanni. As shown in Scheme 1, the swinholide A macrocycle is made up of two identical monomeric secoacid units 4 (\equiv pre-swinholide A^{4}), lactonised through the $21 / 21$ ' hydroxyls as indicated, while that of scytophycin \mathbf{C} corresponds to the secoacid 5 .

Scheme 1
As part of our efforts directed towards the total synthesis of these complex macrolides, ${ }^{5}$ we have previously described the enantiocontrolled preparation of aldehydes $6^{5 \mathrm{a}}$ and 75 b , as $\mathrm{C}_{19}-\mathrm{C}_{32}$ and $\mathrm{C}_{17}-\mathrm{C}_{32}$ subunits of swinholide A (misakinolide A) and scytophycin C, respectively. We now report the asymmetric synthesis of the aldehyde 8 and the corresponding ethyl ketone 9 , as matching $C_{1}-C_{15}$ and $C_{1}-C_{16}$ subunits for swinholide A and scytophycin C.

Scheme 2 summarises our strategy for the synthesis of pre-swinholide A^{4} (4), involving the stereocontrolled aldol coupling of the ethyl ketone 10 to the aldehyde 8 to form the $\mathrm{C}_{15}-\mathrm{C}_{16}$ bond. We have already described ${ }^{5 a}$ an efficient asymmetric synthesis of 6 , which should serve as a precursor for 10 . Our approach $^{5 b}$ to scytophycin C relies on a different aldol coupling at $\mathrm{C}_{16}-\mathrm{C}_{17}$ between the ethyl ketone 9 and the aldehyde 7. As outlined below, the aldehyde 8 should be available in enantiomerically correct form by starting with an asymmetric synthesis of the (R)-dihydropyrone 11. A preliminary study, 5 c using racemic 11 with $\mathrm{P}_{1}=$ Bn , demonstrated that the two-step sequence, $12 \rightarrow 13 \rightarrow 14$, worked well using silyl enol ether chemistry allowing efficient control of the relative stereochemistry at C_{9} and C_{7}. However, in order to ensure efficient deprotection at C_{15} to give the alcohol precursor of 8 , it was subsequently found to be necessary to use $\mathrm{P}_{1}=\mathrm{Bz}$ (PhCO) rather than $\mathrm{Bn} .{ }^{6}$

Scheme 2
The enantiocontrolled synthesis of the aldehyde 8 and its derived ethyl ketone 9, starting from (E)-1-chloro-2-buten-3-one (15), ${ }^{7}$ is shown in Scheme 3 and outlined below. Enolisation ${ }^{8}$ of 15 with (+)$\mathrm{Ipc}_{2} \mathrm{BCl} / \mathrm{Pr}_{2} \mathrm{NEt}\left(\mathrm{PhMe}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h}\right)$ was followed by the addition of the aldehyde 17 to the derived enol borinate $16\left(-78{ }^{\circ} \mathrm{C}, 3.5 \mathrm{~h}\right) .{ }^{9}$ Subsequent warming of the reaction mixture $\left(-20^{\circ} \mathrm{C}, 18 \mathrm{~h}\right)$ gave, after mild oxidative workup, a 56% yield of the aldol product $18{ }^{10}$ in 80% ee, $[\alpha]_{D}^{20}=-15.2^{\circ}$ (c 2.6, CHCl_{3}). Higher yields of 18 (up to 77%) could be obtained by using shorter reaction times, or by carrying out the aldol reaction in $\mathrm{Et}_{2} \mathrm{O}$, but this led to a reduction in enantioselectivity ($50-60 \%$ ee). ${ }^{11}$ As with other asymmetric boron aldol reactions of methyl ketones, ${ }^{12 a}$ moderate levels of enantioselectivity are obtained, due to competition between twist-boat (cf. $T S-I=$ preferred si-face attack) and chair transition structures. ${ }^{12 b}$ Under our standard conditions using $\mathrm{Me} 3 \mathrm{SiOTf} / \mathrm{Pr}_{2} \mathrm{NEt}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 8$ cyclisation of 18 to the crystalline (R)-dihydropyrone 19 was then achieved in 61% yield. This key intermediate was readily obtained in enantiomerically pure form, $[\alpha]_{\mathrm{D}}^{20}=+66.2^{\circ}$ (c 2.9, CHCl_{3}), simply by recrystallisation from $\mathrm{Et}_{2} \mathrm{O} /$ hexane (m.p. $62-63^{\circ} \mathrm{C}$). ${ }^{13}$

Using $\mathrm{NaBH}_{4} / \mathrm{CeCl}_{3}{ }^{14}$ reduction of 19 to the corresponding allylic alcohol, followed by acetylation, gave the acid-sensitive glycal $20,[\alpha]_{\mathrm{D}}^{20}=-36.5^{\circ}\left(c 3.1, \mathrm{CHCl}_{3}\right)$, in 97% overall yield. A variant ${ }^{5 \mathrm{c}}$ of the Ferrier rearrangement, ${ }^{15}$ subsequently allowed the stereocontrolled introduction of the C 9 aldehydic side-chain with concomitant allylic transposition. Reaction of 20 with the tert-butyldimethylsilyl enol ether of acetaldehyde, 5 c in the presence of $\mathrm{Cl}_{2} \mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{2}$ (2.2 equiv, $\mathrm{PhMe},-42^{\circ} \mathrm{C}, 0.5 \mathrm{~h}$), gave an 83% yield of the aldehyde $21,[\alpha]_{\mathrm{D}}^{20}=$ -17.5° (c $2.9, \mathrm{CHCl}_{3}$), with 97% ds. This has the correct oxidation level for chain-extension by an aldol addition. Introduction of the C_{7} stereocentre in the desired sense relied on the γ-selective addition of the silyl dienol ether 22 to the si-face of the aldehyde 21. This vinylogous Mukaiyama aldol reaction ${ }^{5 e}$ was best achieved by using $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ (2.2 equiv) as a mono-coordinating Lewis acid in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}$ at $-78{ }^{\circ} \mathrm{C}$, i.e. without chelate participation from the dihydropyran oxygen. Under these conditions, an $81: 19$ ratio of epimeric alcohols was obtained in 85% yield. The major alcohol 23 (69% yield) was shown to have the corrcet ($7 S$) configuration, together with the required (E)-enal terminus. Horner-Emmons olefination of 23 cleanly introduced the second (E)-double bond of the diene ester moiety to give $\mathbf{2 4}$ in 88% yield. At this point,
we confirmed the C_{7} configuration as (S) by ${ }^{1} \mathrm{H}$ NMR analysis ${ }^{16 a}$ of the Mosher ester ${ }^{16 b, c}$ derivatives of 24 . Next, the $7-\mathrm{OH}$ was protected as its TBS ether $25,[\alpha]_{\mathrm{D}}^{20}=-45.0^{\circ}\left(\mathrm{c} 2.9, \mathrm{CHCl}_{3}\right)$, which was followed by the efficient cleavage of the benzoate ester by transesterification, to give a 91% yield of $26,[\alpha]_{\mathrm{D}}^{20}=-81.6^{\circ}(c) .5$, CHCl_{3}). Dess-Martin oxidation ${ }^{17}$ of 26 then gave the aldehyde $8^{10}(95 \%),[\alpha]_{\mathrm{D}}^{20}=-83.3^{\circ}\left(c \quad 1.7, \mathrm{CHCl}_{3}\right)$, as required for swinholide A.

Conversion of 8 into the ethyl ketone 910 required for scytophycin C could be achieved in 60% yield (unoptimised) by the addition of EtMgBr to give a $1: 1$ mixture of C_{15} secondary alcohols, followed by DessMartin oxidation. 17

Scheme 3 (a) (+)-(Ipc) ${ }_{2} \mathrm{BCl},{ }^{i} \mathrm{Pr}_{2} \mathrm{NEt}$, $\mathrm{PhMe}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h} ; 17,-78 \rightarrow-20^{\circ} \mathrm{C}, 21.5 \mathrm{~h}^{2} \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{MeOH}, \mathrm{pH}-7$ buffer; (b) 1.05 equiv $\mathrm{Me}_{3} \mathrm{SiOTf}, 0.8$ equiv ${ }^{i} \mathrm{Pr}_{2} \mathrm{NEt}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78 \rightarrow 20^{\circ} \mathrm{C}, 2.5 \mathrm{~h}$; (c) $\mathrm{NaBH}_{4}, \mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}, \mathrm{EtOH},-78^{\circ} \mathrm{C}, 2 \mathrm{~h}$; (d) $\mathrm{Ac}_{2} \mathrm{O}^{(}{ }^{i} \mathrm{Pr}_{2} \mathrm{NEt}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 18 \mathrm{~h}$; (e) $\mathrm{H}_{2} \mathrm{C}=\mathrm{CHOTBS}, 2.2$ equiv $\mathrm{Cl}_{2} \mathrm{Ti}\left(\mathrm{O}^{\prime} \mathrm{Pr}\right)_{2}, \mathrm{PhMe},-42{ }^{\circ} \mathrm{C}, 0.5 \mathrm{~h} ;(f) 22,2.2$ equiv $\mathrm{BF}_{3}{ }^{\circ} \mathrm{OEt}_{2}, 9: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et} 2 \mathrm{O},-78{ }^{\circ} \mathrm{C}, 1 \mathrm{~h} ;(\mathrm{g})(\mathrm{MeO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me},{ }^{n} \mathrm{BuLi}, \mathrm{THF}, 0 \rightarrow 20^{\circ} \mathrm{C}, 3 \mathrm{~h}$; (h) TBSOTf, 2,6-lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 20 \mathrm{~min}$; (i) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}, 20^{\circ} \mathrm{C}, 5.5 \mathrm{~h}$; (j) Dess-Martin periodinane, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $20^{\circ} \mathrm{C}, 0.5-1.5 \mathrm{~h} ;(k) \mathrm{EMgBr}^{2} \mathrm{E}_{2} \mathrm{O},-78 \rightarrow 0^{\circ} \mathrm{C}, 20 \mathrm{~min}$.

In summary, the $\mathrm{C}_{1}-\mathrm{C}_{15}$ subunit $\mathbf{8}$ of swinholide A has been efficiently prepared in enantiomerically pure form in ten steps (14.5% yield, 78% ds) from 15 . This aldehyde has also been converted in two further steps into the $\mathrm{C}_{1}-\mathrm{C}_{16}$ subunit 9 of scytophycin C . In this synthesis, the introduction of the C_{13} stereocentre relies on the reagent-controlled boron aldol reaction, $15+17 \rightarrow 18$, while the remaining two stereocentres are set up by the sequence, $\mathbf{2 0} \boldsymbol{\rightarrow 2 1} \boldsymbol{\rightarrow 2 3}$, using substrate-induced control. Further studies directed towards the total synthesis of swinholide A and scytophycin C are underway.

Acknowledgement: We thank the SERC (GR/H01922), Rhône-Poulenc Rorer (Dagenham), and Merck, Sharp \& Dohme (Terlings Park) for their support, and Dr P. Pitchen and Dr C. G. Newton (RPR) for helpful discussions.

References and Notes

1. (a) Carmely, S.; Kashman, Y. Tetrahedron Lett. 1985, 26, 511; (b) Kitagawa, I.; Kobayashi, M.; Katori, T.; Yamashita, M.; Tanako, J.; Doi, M.; Ishida, T. J. Am. Chem. Sac. 1990, I12, 3710; (c) Kobayashi, M.; Tanaka, J.; Katori, T.; Matsuura, M.; Yamashita, M.; Kitagawa, I. Chem. Pharm. Bull. 1990, 38, 2409; (d) Doi, M.; Ishida, T.; Kobayashi, M.; Kitagawa, I. J. Org. Chem. 1991, 56, 3629; (e) Kobayashi, M.; Tanaka, J.; Katori, T.; Kitagawa, I. Chem. Pharm. Bull. 1990, 38 , 2960.
2. (a) Sakai, R.; Higa, T.: Kashman. Y. Chem. Lett. 1986, 1499; (b) Kato, Y.; Fusetani, N.; Matsunaga, S.; Hashimoto, K.; Sakai, R.; Higa, T.; Kashman, Y. Tetrahedron Lett 1987, 28, 6225; (c) Tanaka, J.; Higa, T.; Kobayashi, M.; Kitagawa, I. Chem. Pharm. Bull. 1990, 38, 2967; (d) Kobayashi, J.; Tsukamoto, S.; Tanabe, A.; Sasaki, T.; Ishibashi, M. J. Chem. Soc., Perkin Trans. 1 1991, 2379.
3. Ishibashi, M.; Moore, R. E.; Patterson, G. M. L.; Xu, C.; Clardy, J. J. Org. Chem. 1986, 51, 5300.
4. The monomeric acid 4 ($=$ pre-swinholide A) has also been isolated from Theonella swinhoei, see: (a) Todd, J. S.; Alvi, K. A.; Crews, P. Tetrahedron Lett. 1992, 33, 441; (b) Tsulkamoto, S.; Ishibashi, M.; Sasaki, T.; Kobayashi, J. J. Chem. Soc., Perkin Trans. 1 1991, 3185.
5. For previous synthetic studies directed towards swinholide A and scytophycin C, see: (a) Paterson, I.; Cumming, J. G. Tetrahedron Lett. 1992, 33, 2847; (b) Paterson, I.; Yeung, K.-S. Tetrahedron Lett. 1993, 34, 5347 (preceding paper); (c) Paterson, I.; Smith, J. D. J. Org. Chem. 1992, 57, 3261.
6. Controlled debenzylation of $25, \mathrm{P}=\mathrm{Bn}$, was unsuccessful under a wide range of conditions, or gave an unacceptably low yield (e.g. 30% yield of 26 using DDQ).
7. Price, C. C.; Pappalardo, J. A. J. Am. Chem. Soc. 1950, 72, 2613.
8. Paterson, I.; Osborne, S. Tetrahedron Lett. 1990, 31, 2213.
9. The aldehyde 17 was prepared from 1,3-propanediol by (i) (PhCO$)_{2} \mathrm{O}$, pyridine; (ii) Dess-Martin periodinane, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. It is unstable to chromatography and best used immediately after the oxidation step. To avoid the use of the Dess-Martin periodinane reagent on a large scale, we have also developed an alternative sequence starting from 3-buten-1-ol: (i) (PhCO$)_{2} \mathrm{O}$, pyridine; (ii) $\mathrm{OsO}_{4}, \mathrm{NMO}, \mathrm{Me}_{2} \mathrm{CO}$; (iii) NaIO_{4}.
10. All new compounds gave spectroscopic data in agreement with the assigned structures. 8 had $\left.{ }^{1} \mathbf{H} \mathbf{N M R} \mathbf{\delta (4 0 0 M H z}, \mathbf{C D C l} 3\right)$ $9.78(1 \mathrm{H}, \mathrm{dd}, J=2.4,1.4 \mathrm{~Hz}, \mathrm{CHO}), 7.33(1 \mathrm{H}, \mathrm{d}, J=15.7 \mathrm{~Hz}, 3-\mathrm{CH}), 5.96(1 \mathrm{H}, \mathrm{br} \mathrm{dd}, J=7.4,7.4 \mathrm{~Hz}, 5-\mathrm{CH}), 5.82-5.73$ $(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{CH}$ and $11-\mathrm{CH}), 5.64(1 \mathrm{H}, \mathrm{dm}, J=10.3 \mathrm{~Hz}, 10-\mathrm{CH}), 4.30(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=10.8 \mathrm{~Hz}, 9-\mathrm{CH}), 4.14-4.07(1 \mathrm{H}, \mathrm{m}$, $13-\mathrm{CH}), 4.01-3.92(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{CH}), 3.73\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 2.63\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=16.5,8.6,2.4 \mathrm{~Hz}, 14-\mathrm{CH}_{\mathrm{A}}\right), 2.49(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=$ $\left.16.5,3.9,1.4 \mathrm{~Hz}, 14-\mathrm{CH}_{\mathrm{B}}\right), 2.43-2.33\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{CH}_{2}\right), 2.04-1.95\left(2 \mathrm{H}, \mathrm{m}, 12-\mathrm{CH}_{2}\right), 1.77(3 \mathrm{H}, \mathrm{s}, 4-\mathrm{CMe}), 1.69(1 \mathrm{H}, \mathrm{ddd}, J$ $\left.=14.4,10.8,2.2 \mathrm{~Hz}, 8-\mathrm{CH}_{\mathrm{A}}\right), 1.39\left(1 \mathrm{H}, \mathrm{ddd}, J=14.4,10.0,2.6 \mathrm{~Hz}, 8-\mathrm{CH}_{\mathrm{B}}\right), 0.86(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 0.03(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe})$; ${ }^{13} \mathrm{C}$ NMR $\delta\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 200.9,168.0,149.6,137.7,134.3,130.3,123.2,115.4,69.2,67.8,62.5,51.5,49.0$, $40.3,37.6,30.2,25.8,18.0,12.4,-4.4,-4.8 ; \mathrm{HRMS}(\mathrm{Cl}, \mathrm{NH} 3)(\mathrm{M}+\mathrm{H})^{+}$found $423.2567, \mathrm{C}_{23} \mathrm{H}_{39} \mathrm{O}_{5} \mathrm{Si}$ requires 423.2567. 9 had ${ }^{1} \mathrm{H} \mathrm{NMR} \delta\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) 7.34(1 \mathrm{H}, \mathrm{d}, J=15.6 \mathrm{~Hz}, 3-\mathrm{CH}), 6.02(1 \mathrm{H}, \mathrm{br} \mathrm{dd}, J=7.3,7.3 \mathrm{~Hz}, 5-\mathrm{CH}), 5.79(1 \mathrm{H}, \mathrm{d}$, $J=15.6 \mathrm{~Hz}, 2-\mathrm{CH}), 5.78-5.71(1 \mathrm{H}, \mathrm{m}, 11-\mathrm{CH}), 5.62(1 \mathrm{H}, \mathrm{dm}, J=10.3 \mathrm{~Hz}, 10-\mathrm{CH}), 4.26(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=10.9 \mathrm{~Hz}, 9-\mathrm{CH})$, $4.11-4.04(1 \mathrm{H}, \mathrm{m}, 13-\mathrm{CH}), 3.99-3.93(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{CH}), 3.73\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 2.68\left(1 \mathrm{H}, \mathrm{dd}, J=15.7,8.9 \mathrm{~Hz}, 14-\mathrm{CH}_{\mathrm{A}}\right), 2.46$ $\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.3 \mathrm{~Hz}, 15-\mathrm{CH}_{2}\right), 2.41-2.33\left(3 \mathrm{H}, \mathrm{m}, 6-\mathrm{CH}_{2}\right.$ and $\left.14-\mathrm{CHB}_{\mathrm{B}}\right), 2.03-1.90\left(2 \mathrm{H}, \mathrm{m}, 12-\mathrm{CH}_{2}\right), 1.77(3 \mathrm{H}, \mathrm{s}, 4-\mathrm{CMe})$, $1.68\left(1 \mathrm{H}, \mathrm{ddd}, J=14.4,11.0,2.2 \mathrm{~Hz}, 8-\mathrm{CH}_{\mathrm{A}}\right), 1.34(1 \mathrm{H}, \mathrm{ddd}, J=14.4,10.1,2.4 \mathrm{~Hz}, 8-\mathrm{CHB}), 1.04(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}$, $\left.15-\mathrm{CH}_{2} \mathrm{Me}\right), 0.86\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{3}\right), 0.024(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.018(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}) ;{ }^{13} \mathrm{C} \mathrm{NMR} \delta\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 209.5$, $168.1,149.9,138.2,134.1,130.3,123.4,115.2,69.3,67.6,63.6,514,47.8,40.2,37.6$ (2 carbons), 30.3, 25.9, 18.0, 12.4, $7.6,-4.4,-4.8 ; \mathbf{H R M S}\left(\mathrm{CI}, \mathrm{NH}_{3}\right)(\mathrm{M}+\mathrm{H})^{+}$found $451.2880, \mathrm{C}_{25} \mathrm{H}_{43} \mathrm{O} 5 \mathrm{Si}$ requires 451.2880 .
11. We tentatively attribute this curious result to the preferential decomposition of the minor boron aldolate diastereomer when the reaction is kept at $-20^{\circ} \mathrm{C}$ for 18 h .
12. (a) Paterson, I.; Goodman, J. M.; Lister, M. A.; Schumann, R. C.; McClure, C. K.; Norcross, R. D. Tetrahedron 1990, 46, 4663; (b) Bernardi, A.; Capelli, A. M.; Gennari, C.; Goodman, J. M.; Paterson, I. J. Org. Chem. 1990, $55,3576$.
13. It also proved possible to recrystallise 19 of 50% ee to optical purity, provided the crystallisation was seeded with crystals of enantiopure 19.
14. (a) Gemal, A. L.; Luche, J-L. J. Am. Chem. Soc. 1981, 103, 5454; (b) Danishefsky, S. J.; DeNinno, S.; Lartey, P. J. Am. Chem. Soc. 1987, 109, 2082.
15. (a) Ferrier, R. J. J. Chem. Soc. (A) 1964, 5443; (b) Ferrier, R. J.; Prasad, N. J. Chem. Soc. (C). 1969, 570.
16. (a) Ohtani, I.; Kusumi, T.; Kashman, Y.; Kakisawa, H. J. Am. Chem. Soc. 1991, 113, 4092; (b) Dale, J. A.; Mosher, H. S. J. Am. Chem. Soc. 1973, 95, 512; (c) Sullivan, G. R.; Dale, J. A.; Mosher, H. S. J. Org. Chem. 1973, $38,2143$.
17. Dess, D. B.; Martin, J. C. J. Am. Chem. Soc. 1991, 1/3, 7277.
